EFECTOS DE LA DOMINANCIA SOCIAL SOBRE EL CONSUMO DE MATERIA SECA Y LOS NIVELES DE GLUCOSA E INSULINA EN VAQUILLONAS DE LECHE DURANTE EL PERÍODO PREPUBERAL

Por

MATTO LENÚ Guillermo
MÉNDEZ PEREIRA Mª Noel
TRIAY ZAPATA Francisco

TESIS DE GRADO presentada como uno de los requisitos para obtener el título de Doctor en Ciencias Veterinarias
Orientación: Producción Animal

MODALIDAD: Ensayo Experimental

MONTEVIDEO
URUGUAY
2016
PÁGINA DE APROBACIÓN

TESIS DE GRADO aprobada por:

Presidente de Mesa:

Germán Antúnez

Segundo Miembro (Tutor):

Carolina Fiol

Tercer Miembro:

Lorena Lacuesta

Cuarto Miembro (Co-Tutor):

Rodolfo Ungerfeld

Fecha: 26 de Agosto, 2016

Autores:

Guillermo Matto

Ma. Noel Méndez

Francisco Triay
AGRADECIMIENTOS

A nuestros incondicionales familiares, que nos impulsan en nuestra formación como personas y profesionales.

A los amigos que recorrieron con nosotros esta etapa; los de siempre y los que recogimos al transitar por este hogar de estudios.

A Ignacio Donadío, Leticia Estathiou, Annie dos Santos, Verónica Sánchez, Ana Maverino, Augusto Lacava, Stephani Bachini y Federico De León por compartir con nosotros esta linda experiencia.

A Carolina Fiol y Rodolfo Ungerfeld por ser nuestros tutores.

A la Agencia Nacional de Innovación e Investigación (ANII) por estimular la formación de nuevos investigadores en el país.

Al Laboratorio de Nutrición de Rumiantes (LABRUMEN) de la Universidad Federal de Santa María, RS, Brasil, por su colaboración con los análisis de las muestras tomadas durante el período experimental.

A nuestra Facultad, por brindarnos herramientas y permitir la realización del ensayo en el Campo Experimental Nº2.
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>PÁGINA DE APROBACIÓN</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRADECIMIENTOS</td>
<td>3</td>
</tr>
<tr>
<td>LISTA DE TABLAS Y FIGURAS</td>
<td>5</td>
</tr>
<tr>
<td>1. RESUMEN</td>
<td>6</td>
</tr>
<tr>
<td>2. SUMMARY</td>
<td>7</td>
</tr>
<tr>
<td>3. INTRODUCCIÓN</td>
<td>8</td>
</tr>
<tr>
<td>4. REVISIÓN BIBLIOGRÁFICA</td>
<td>10</td>
</tr>
<tr>
<td>4.1. Producción lechera</td>
<td>10</td>
</tr>
<tr>
<td>4.2. Recría</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1. Sistemas intensivos de alimentación</td>
<td>11</td>
</tr>
<tr>
<td>4.3. Dominancia social en bovinos</td>
<td>12</td>
</tr>
<tr>
<td>4.4. Efectos de la dominancia social en animales de producción</td>
<td>14</td>
</tr>
<tr>
<td>4.4.1. Agrupamiento y manejo de lotes</td>
<td>14</td>
</tr>
<tr>
<td>4.4.2. Bienestar y salud animal</td>
<td>15</td>
</tr>
<tr>
<td>4.4.3. Comportamiento ingestivo y consumo de alimento</td>
<td>17</td>
</tr>
<tr>
<td>4.4.4. Metabolismo energético</td>
<td>20</td>
</tr>
<tr>
<td>5. HIPÓTESIS</td>
<td>23</td>
</tr>
<tr>
<td>6. OBJETIVOS</td>
<td>24</td>
</tr>
<tr>
<td>7. MATERIALES Y MÉTODOS</td>
<td>25</td>
</tr>
<tr>
<td>7.1. Animales y manejo</td>
<td>25</td>
</tr>
<tr>
<td>7.2 Determinación de la dominancia social</td>
<td>26</td>
</tr>
<tr>
<td>7.3 Determinación del consumo de alimento</td>
<td>26</td>
</tr>
<tr>
<td>7.4 Determinación de la tasa de consumo</td>
<td>27</td>
</tr>
<tr>
<td>7.5 Determinación de las concentraciones de glucosa e insulina en sangre</td>
<td>27</td>
</tr>
<tr>
<td>7.4 Análisis estadístico</td>
<td>28</td>
</tr>
<tr>
<td>8. RESULTADOS</td>
<td>29</td>
</tr>
<tr>
<td>8.1 Consumo de Materia Seca y Tasa de Consumo</td>
<td>29</td>
</tr>
<tr>
<td>8.2 Metabolismo energético</td>
<td>30</td>
</tr>
<tr>
<td>9. DISCUSIÓN</td>
<td>32</td>
</tr>
<tr>
<td>10. CONCLUSIONES</td>
<td>35</td>
</tr>
<tr>
<td>11. REFERENCIAS BIBLIOGRÁFICAS</td>
<td>36</td>
</tr>
</tbody>
</table>
LISTA DE TABLAS Y FIGURAS

Tabla 1. Ingredientes y composición química de la dieta para vaquillonas mantenidas en encierre a corral durante 120 días. Valores expresados como porcentaje de MS de la dieta. ...25

Tabla 2. Consumo de materia seca (CMS) y Tasa de consumo en vaquillonas de leche dominantes (DOM) y subordinadas (SUB) durante los tres períodos de muestreo (Periodo I = 17 d; Periodo II = 78 d; Periodo III = 112 d). Las vaquillonas fueron mantenidas de a pares y alimentadas con una ración totalmente mezclada durante 120 días...29

Figura 1. Concentraciones de glucosa en vaquillonas de leche dominantes y subordinadas a lo largo del periodo experimental. Las vaquillonas fueron mantenidas de a pares y alimentadas con una ración totalmente mezclada durante 120 días...30

Figura 2. Concentraciones de insulina en vaquillonas dominantes y subordinadas a lo largo del periodo experimental. Las vaquillonas fueron mantenidas de a pares y alimentadas con una ración totalmente mezclada durante 120 días...31
1. RESUMEN

El objetivo del presente estudio fue evaluar los efectos de la dominancia social sobre el consumo de materia seca (CMS), la tasa de consumo y el metabolismo energético (glucosa e insulina) en vaquillonas Holando pre-púberes mantenidas en un sistema de alimentación a corral en situación de competencia social continua. Para ello se utilizaron 16 terneras Holando que al inicio del trabajo tenían 8,2 ± 0,3 meses de edad y pesaban 208,5 ± 13,9 kg (media ± EE). Las mismas provinieron de un mismo rodeo lechero bajo igual manejo previo, y fueron adjudicadas a 8 diadas homogéneas en edad y peso vivo. Cada diada se mantuvo en el mismo piquete (5 × 8 m) con sombra, recibiendo una ración totalmente mezclada (RTM) formulada para una ganancia diaria promedio de 800 g/d, con un espacio de comedero lineal total de 0,6 m y agua ad-libitum. Para maximizar la competencia se restringió al 5% la ración a partir del consumo potencial medido en cada diada. El experimento duró 120 días. La determinación de la dominancia se realizó mediante el registro del número de interacciones agonistas en cada diada, definiendo el animal “dominante” y el “subordinado” de acuerdo a la cantidad de interacciones agonistas exitosas. El CMS fue estimado a partir de la técnica del doble marcaje utilizando un marcador externo (óxido de cromo) y un marcador interno (fibra neutro detergente indigestible) para la estimación de la producción de heces y de la digestibilidad de la MS, respectivamente, durante tres periodos (día 17, 78 y 112). En los tres periodos se registró el comportamiento ingestivo mediante el procedimiento de scan sampling. Se extrajo sangre cada 2 semanas mediante la punción de la vena coxígea para la medición de las concentraciones plasmáticas de insulina y glucosa. Si bien no hubo efecto de la dominancia social sobre el CMS total entre vaquillonas de distinto rango social, las vaquillonas subordinadas presentaron una mayor tasa de consumo en comparación con las dominantes en el período II (P = 0,01), y una tendencia en el período I (P=0,09). Las vaquillonas dominantes presentaron mayores concentraciones de glucosa que las subordinadas sin diferencias en las concentraciones de insulinina entre grupos. En conclusión, en situaciones de competencia las vaquillonas subordinadas incrementaron su tasa de consumo en comparación con las dominantes, lo que podría haber determinado los consumos de MS similares entre animales de ambos rangos. A su vez, las vaquillonas dominantes presentaron mayores niveles de glucosa en relación a las subordinadas, lo que se asociaría a un estatus energético más positivo en las primeras.
2. SUMMARY

The aim of this study was to evaluate the effects of social dominance on dry matter intake (DMI), rate of intake, and energetic metabolism (of glucose and insulin), in prepubertal Holstein heifers under a continued situation of social competition. Sixteen Holstein heifers were used, with 8.2 ± 0.3 months of age and 208.5 ± 13.9 kg of body weight (media ± SD) at the beginning of the experimental period. Heifers came from the same herd and were previously managed as a single group, and assigned to 8 dyads homogeneous in age and live weight. Each dyad was kept in the same shadowed pen (5 x 8 m), and were fed a total mixed ration (TMR) once daily, formulated to reach an average daily gain of 800 g/d, with a feed bunk space of 0.6m, and ad libitum access to water. In order to maximize competition, a 5% feeding restriction was established from the potential dry matter intake of each dyad. The entire duration of the experimental period was 120 days. The determination of dominance was established by recording the number of agonistic interactions in each dyad, defining the "dominant" and "subordinate" heifer according to the number of successful agonistic interactions. Dry matter intake was estimated with a double marker technique, using an external marker (chromium oxide) and an internal marker (indigestible neutral detergent fiber) for the estimation of faeces excretion and dry matter digestibility, respectively, three times during the experiment (day 17, day 78 and day 112). In each one of those three periods, observations of feeding behaviour were made by scan sampling procedure. Blood samples were drawn from the coccygeal vein in all of the animals at 2-week intervals to determine glucose and insulin concentrations. Although social dominance had no effects on DMI, subordinate heifers had a higher feeding rate compared to dominant heifers in period II (P = 0.01), and a tendency in period I (P=0.09). Dominant heifers showed higher glucose concentrations than subordinate ones with no differences on insulin concentrations between groups. In conclusion, in competitive situations subordinate heifers increased their consumption rate in comparison to the dominant ones, which could had determined the similar DMI between animals of both social status. At the same time, dominant heifers showed increased glucose levels compared to subordinate heifers, which could have been linked to a more positive energetic status in dominant ones.
3. INTRODUCCIÓN

En los últimos 25 años, la producción lechera en Uruguay aumentó persistentemente. No obstante, se ha reducido tanto la superficie destinada a la actividad lechera como el número total de productores dedicados a dicha actividad (DIEA, 2015). Esto es consecuencia de un mejor manejo de los recursos y en consecuencia una mayor eficiencia a lo largo de ciclo productivo.

La etapa de recría es el intervalo entre el desleche y el primer parto, y tiene incidencia en el futuro productivo y reproductivo del animal (Repetto et al., 2008). El objetivo de esta etapa es alcanzar un tamaño y condición corporal adecuada para el primer servicio y el parto que optimicen su desempeño posterior (LeCozler, 2008). Tanto la manipulación e intensificación de la recría, como el uso de sistema de corrales de alimentación, son estrategias importantes para mejorar la eficiencia en el tambo y maximizar el potencial genético de los animales (González, 2010). Este sistema, en el que hasta el 100% del alimento es suministrado en forma de ración totalmente mezclada (RTM), permite liberar área para otras actividades, independencia del clima, mejor predicción de la ganancia diaria de peso, y servir vaquillonas con 14-15 meses (Mendoza, 2007).

La dominancia social es una característica del comportamiento gregario del ganado, relevante en sistemas donde los espacios y el alimento pueden ser finitos, y en los que algunos animales pueden tener limitado el acceso a los recursos (Grant y Albright, 2001). A nivel de grupo se genera una jerarquía u orden social donde cada individuo ocupa una posición determinada conformando segmentos que incluyen dominantes, intermedios y subordinados, establecidos sobre la base de un valor de dominancia calculado a partir de interacciones sociales observadas a nivel de la diada y caracterizadas en cada grupo por un índice de fuerza o linealidad (Landaeta-Hernández, 2011). En sistemas de alimentación a corral en que los animales consumen solamente RTM los individuos subordinados tienen menores posibilidades de alimentarse inmediatamente luego de suministrado el alimento (Longenbach et al., 1999; DeVries et al., 2004, 2009a; Huzzey et al., 2006). En la mayoría de los estudios en los que se suministró RTM ad libitum no se observó diferencias en el consumo total de alimento en animales de distinto rango social, aunque las tasas de consumo fueron mayores en los animales subordinados (Olofsson, 1999; DeVries et al., 2004; González et al., 2008; Zobel et al., 2011). Sin embargo, cuando se incrementa la competencia por restricción en la cantidad de alimento suministrado o por el acceso a la misma (tamaño de comedero), los resultados del consumo total en animales de bajo rango podrían ser perjudicados (Greter et al., 2011). A su vez, podría esperarse que la composición del alimento consumido no sea la misma, ya que los bovinos seleccionan de acuerdo a los componentes de la dieta (DeVries et al., 2005; Greter et al., 2008; Hosseinkhani et al., 2008; DeVries y von Keyserlingk, 2009a). Por tanto, si la competencia en los comederos es alta, pueden
observarse ganancias de peso diferentes y en consecuencia condiciones corporales dispares en el mismo lote según el lugar que cada animal ocupe en el orden jerárquico social (Olofsson 1999, González et al., 2008, Greter et al., 2010, 2013).

Las concentraciones sanguíneas de insulina y de glucosa son indicadores del estatus energético del animal, observándose un incremento de los mismos a medida que la dieta aumenta en concentración energética y a medida que se incrementan las reservas grasas corporales (Diskin et al., 2003; León et al., 2004; Pareek et al., 2007; Chelikani et al., 2009; Vieira et al., 2010; Walsh et al., 2012). En éste sentido, es de esperar que cualquier alteración del consumo de alimento determine cambios en las concentraciones sanguíneas de dichos indicadores.

Por lo expuesto anteriormente, en el presente estudio nos planteamos evaluar los efectos de la dominancia social sobre el consumo de alimento, la tasa de consumo del mismo y el metabolismo energético, en vaquillonas Holando pre-púberes mantenidas en un sistema de alimentación a corral, de a pares, con alto grado de competencia.
4. REVISIÓN BIBLIOGRÁFICA

4.1. PRODUCCIÓN LECHERA

En Uruguay se puede apreciar un importante aumento de la producción láctea en los últimos años, pasando de 790 a 2240 millones de litros de leche anual comercial entre los años 1990 y 2014. Entre 2007 y 2014 hubo un aumento de producción anual en litros por vaca masa de 3875 a 5270. En contraposición a esto, el número de productores se ha reducido de 6500 a 4300 en estos últimos 25 años, al igual que el área destinada a la actividad láctea, que ha pasado de 1.063.000 a 794.000 hectáreas. Esta disminución es explicada en gran parte por un aumento en la rentabilidad de la producción agrícola, principalmente de trigo y soja, que en conjunto pasaron a ocupar 1.027.600 hectáreas más en el período 2014-2015 si se compara a 2007-2008 (DIEA, 2015).

En un escenario de alzas productivas continuadas y menor disponibilidad de superficie para la lechería se hace imprescindible incrementar la eficiencia del rodeo. En el sistema lechero, las vaquillonas recriadas reemplazan a los animales que se eliminan anualmente del rodeo lechero, es decir, la eficiencia del rodeo depende directamente de la eficiencia de la recría (González, 2010).

4.2. RECRÍA

Se entiende como recría el intervalo comprendido entre el desleche y el primer parto, siendo este período un determinante central del futuro desempeño tanto productivo como reproductivo (Repetto et al., 2008). Si bien la importancia de la recría es reconocida a nivel del sector lácteo, gran parte de los productores tienen dificultades en vislumbrar el impacto económico positivo de la mejora en su eficiencia, visualizándola simplemente como una categoría improductiva que ocupa áreas que podrían ser destinadas a rodeos en producción (LeCozler, 2008). Las restricciones consecuentes en la cantidad y calidad de alimento consumido por las vaquillonas prolongan, en primera instancia, la edad a la que reciben el primer servicio, y además resultan en un bajo peso al parto (González, 2010). En contrapartida, un correcto manejo de esta categoría determina claros beneficios a nivel de todo el sistema de producción: aumento de la vida productiva del animal, disminución del número de reemplazos necesarios, aumento de la presión de selección y posible incremento de la velocidad de la mejora genética, permitiendo además comercializar el excedente de vaquillonas producidas (Repetto et al., 2008). El costo relativamente alto de la alimentación puede ser compensado por el retorno obtenido a través de una mayor producción de leche en la primer lactancia y en toda la vida productiva del animal, mayor producción de terneros y una subsecuente contribución a la mejora genética (Gojjam et al., 2010).

El objetivo último de la recría es que las vaquillonas alcancen el tamaño y condición corporal adecuados tanto a primer servicio como al parto, a una edad que minimice los costos de esta etapa improductiva. A su vez, el desarrollo reproductivo en el ganado está más relacionado al desarrollo...
La pubertad está determinada por la activación del eje hipotálamo-hipófiso-ovárico, el que desencadena el pico pre-ovulatorio de la hormona luteinizante dando como resultado la primera ovulación (Murphy et al., 1991). El desenlace es consecuencia básicamente de un ajuste gradual entre la actividad gonadotrófica creciente y la capacidad de síntesis de esteroides y gametos por parte de órganos reproductivos. Desde el punto de vista práctico, un animal ha alcanzado la pubertad cuando es capaz de generar gametos y manifestar su comportamiento sexual (Hafez y Hafez, 2000). La edad a la pubertad y primer parto está relacionada en forma directa con el peso vivo e inversamente con el plano nutricional y por ende la tasa de ganancia de peso vivo de vaquillas de reemplazo (Chelikani et al., 2009; Gojjam et al., 2010). En vaquillas Holando, donde la pubertad ocurre a una edad temprana, el primer servicio a los 15 meses de edad es muy favorable porque la tasa de concepción a esa edad es máxima, y decrece alrededor de un 10% en vaquillas mayores a 26 meses (Kuhn et al., 2006). La reducción de la edad al primer parto por debajo de los 26 meses de edad presenta un efecto positivo en la diferencia entre los retornos de la leche producida y los costos de recría por vaca (Pirlo et al., 2000). La reducción de la edad al primer parto de 24 a 23 meses pareció ser más rentable que de 24 a 22 meses, debiendo considerarse las limitaciones biológicas de crecimiento y desarrollo corporal (Pirlo et al., 2000). El adelanto de la edad al primer parto, especialmente bajo un sistema de precios en declive, podría ser una estrategia eficiente para el productor lechero en busca de una reducción de costos.

La recría constituye la etapa de crecimiento más eficiente para convertir alimento en músculo y hueso, siendo de suma importancia brindar una adecuada alimentación en este período en el que el crecimiento muscular es constante y el uso de los nutrientes muy eficiente (González, 2010). Según Hoffman (1997), el tamaño corporal óptimo debe tomar en cuenta no sólo el peso vivo sino también el desarrollo esquelético (altura, largo y área pélvica), y también la condición corporal (Gojjam et al., 2010). En éste sentido, las recomendaciones apuntan a que las terneras alcancen el 30% del peso adulto a los 6 meses, para llegar a un primer servicio a los 15 meses con el 60% del peso adulto, y un primer parto a los 24 meses de edad con el 80-90% del peso adulto (peso pos-parto), manteniendo una condición corporal entre 3,0 y 3,5 (Hoffman, 1997; Mendoza, 2007).

4.2.1. Sistemas intensivos de alimentación

En Uruguay, la implementación de los sistemas de alimentación intensivos, en los cuales gran parte o la totalidad del alimento es administrado en forma de RTM, ha tenido resultados muy positivos (Repetto et al., 2008). Este tipo de sistema de alimentación es utilizado en asociación con un conjunto de herramientas tecnológicas que intensifican la recría de las vaquillas, con el fin de alcanzar el desarrollo adecuado para poder servirlas a los 15 meses de vida, obteniendo su primer ternero a los 24 meses. Entre otros beneficios, la recría de las vaquillas a corral permite un control más estricto de la ganancia de peso vivo a lo largo de dicho periodo (Mendoza, 2007). En éste sentido, las altas tasas de ganancias de peso vivo se asocian positivamente con una menor
edad a la pubertad (Chelikani et al, 2009). Durante el período comprendido entre los 3 y 11 meses, la glándula mamaria crece a mayor velocidad que el resto del cuerpo, lo que se denomina período de crecimiento alométrico (LeCozler, 2008). Por dicho motivo, en esta etapa es indispensable una alimentación balanceada con una correcta relación energía/proteína para evitar un engrasamiento del parénquima mamario, a la vez que se apunta a ganancias diarias de 800 g/día que maximicen la producción en la primera lactancia (Zanton y Heinrichs, 2005, 2007).

A su vez, las características del sistema de alimentación a corral, como el mayor contacto entre animales, determinan que los aspectos vinculados a la interacción entre los mismos adquieran mayor relevancia. A continuación se presentan los principales factores a considerar en la recría de vaquillonas lecheras, específicamente la dominancia social y sus efectos sobre el consumo de alimento y el metabolismo energético en sistemas intensivos a corral.

4.3. DOMINANCIA SOCIAL EN BOVINOS

La organización en grupos es un rasgo evolutivo, una estrategia adaptativa, y posee importancia práctica cuando resulta en que ciertos animales no acceden a recursos que son esenciales para su desempeño; como alimento y lugares de descanso (Grant y Albright, 2001). La dominancia social es un fenómeno multidimensional que ocurre en todos los animales de granja gregarios y encuentra su reflejo en una jerarquía de dominancia (Langbein y Puppe, 2004). Según Landaeta-Hernández (2011) la dominancia es una situación adquirida, y la presencia de cuernos, el peso, la edad, el número de partos, la raza y la condición corporal son factores que la determinan y permiten predecirla. La heredabilidad del comportamiento de dominancia ha sido estudiada en distintas ocasiones, pero su resultado varía en forma dependiente del diseño experimental, sistemas de puntuación y experiencia previa de los animales (Broucek et al., 2008).

La dominancia social posee tres niveles de análisis o dimensiones: la diada como nivel inicial, el grupo como el mayor nivel, y el individuo como el nivel básico. Mientras que el estado de dominancia de un individuo refiere a una relación diádica, el grado o rango de dominancia caracteriza su posición dentro de un grupo (Langbein y Puppe, 2004). La diada debería ser el nivel de inicio de todo análisis del orden social, mediante un enfoque binomial, en donde cada interacción agonística de la diada (interacciones físicas) da como resultado un individuo ganador y otro perdedor. Un animal es llamado “dominante” sobre otro individuo cuando gana significativamente más veces que lo que pierde en un número observado de encuentros con este individuo (Langbein y Puppe, 2004).

A nivel de grupo se genera un orden social o de dominancia, compuesto por segmentos que incluyen dominantes, intermedios y subordinados, que se establecen sobre la base de un valor de dominancia calculado a partir de interacciones sociales observadas a nivel de la diada y caracterizadas en cada grupo por un índice de fuerza o linealidad (Landaeta-Hernández, 2011). La
jerarquías de dominancia pueden ser divididas en tres tipos: lineales, no lineales pero significativamente diferentes (cuasi-lineal), y no lineales. Un orden de dominancia lineal es completamente transitivo, lo que implica que cuando A es dominante sobre B y B es dominante sobre C, entonces A es dominante sobre C también (Langbein y Puppe, 2004). Inicialmente, a la dominancia social en el ganado se le atribuyó las características de asimetría (o unidireccionalidad) y transitividad, conformando una jerarquía lineal. Posteriormente, observaciones detalladas del comportamiento agonístico dentro de grupos han demostrado serias limitaciones con respecto a las propiedades clásicas de la dominancia, ya que comúnmente se observan comportamientos agonísticos bidireccionales y relaciones de dominancia intransitiva; donde A>B>C pero C>A (Val-Laillet et al., 2008). Finalmente, el tercer nivel de análisis de la dominancia social es el nivel individual, formado por la experiencia de cada individuo en la jerarquía en términos de número de veces que es el iniciador o el receptor de comportamientos agonísticos (Langbein y Puppe, 2004).

El comportamiento social del ganado puede variar con la edad y la madurez. Raussi et al. (2005) observaron que en los primeros meses de vida los terneros presentaron pocas interacciones agresivas, que tendieron a ser más recreativas y bidireccionales, por lo que no se conformó una jerarquía claramente establecida. Luego de la pubertad se hicieron más frecuentes los comportamientos relacionados con la dominancia y las interacciones agonísticas de tipo adulto, como cabezazos y gestos de amenaza. Landaeta-Hernández (2011) señala que la mayor cantidad de interacciones físicas agonistas ocurren inmediatamente después de agrupar a los animales, en ganado lechero esto ocurre dentro de las primeras 48 horas. Posteriormente, dichas interacciones cambian a las no físicas, por lo que una vez establecido el orden social las interacciones más evidentes son la sumisión, la evasión y la distancia. Sin embargo, Val-Laillet et al. (2008) observaron que no siempre se desarrolla este patrón de comportamiento, señalando que la dominancia es recurso-específica y que el suceso competitivo puede ser afectado por la motivación o persistencia del animal subordinado para acceder al recurso, dándose generalmente cuando el animal dominante está saciado y ha perdido el interés por el mismo.

La preocupación mundial por el bienestar animal ha llevado a un mayor uso de sistemas de producción en que los animales son mantenidos en grupos, y en dichos sistemas el comportamiento social puede tener un impacto en la producción y la salud (Broucek et al., 2008). La sociabilidad es una estrategia adaptativa que se ha desarrollado en muchas especies animales; se cree que algunas relaciones entre individuos llevan a una modulación de la respuesta animal ante agentes estresores (Val-Laillet et al., 2009). Por ejemplo, una ventaja de agrupar animales en comparación con mantenerlos aislados es el conocido fenómeno de “facilitación social”, entendido como el aumento de CMS al ser estimulados por la competencia. El agrupamiento debe no sólo minimizar las interacciones sociales negativas y estimular las positivas, sino que además debe disminuir la variación dentro del grupo, pero esto sólo se logra mediante sistemas de gestión bien diseñados que se adecúen al comportamiento natural para garantizar el confort y bienestar (Grant y Albright, 2001). No obstante, el
incremento del tamaño del rodeo sin aumentar la capacidad de las instalaciones es una práctica comúnmente utilizada por los productores lecheros (Botheras, 2007). En dichos sistemas, el aumento de la densidad de animales, y consecuentemente el aumento de la competencia entre los mismos, puede provocar la inhibición de la expresión de comportamientos naturales, reflejada en tiempos reducidos de descanso, aumento del tiempo en que están paradas, alteraciones en el comportamiento ingestivo y mayor nivel de agresión (mayor número de desplazamientos) en el comedero (Krawczel y Grant, 2009).

Desde un enfoque productivo, bajo situaciones en que los animales viven muy próximos unos de otros y frecuentemente compitiendo por recursos limitados, como en los sistemas intensivos de recria, la dominancia social puede determinar diferentes prioridades de un animal sobre otro para acceder a una situación favorable o escapar de una situación desfavorable (Val-Laillet et al., 2008).

4.4. EFECTOS DE LA DOMINANCIA SOCIAL EN ANIMALES DE PRODUCCIÓN

4.4.1. Agrupamiento y manejo de lotes

El tamaño del grupo no debería exceder el número de individuos que un animal es capaz de reconocer para mantener una jerarquía de dominancia estable, no debiendo superar los 100 animales (Grant y Albright, 2001). A su vez, el tamaño óptimo del grupo, desde una perspectiva de comportamiento, estará en función de la competencia por el espacio en el corral, pastura y salas de espera, por la comida y el agua, la disponibilidad de alojamientos confortables y desocupados, y el tiempo utilizado en estas actividades (Grant y Albright, 2001).

La estrategia de agrupamiento tiene un impacto potencial en el confort animal, competencia por comida, agua, otros recursos, y salud de rodeo, repercutiendo finalmente en el consumo de materia seca (Grant y Albright, 2001). Cuando las vacas son introducidas a un grupo social estable, el grupo entero puede ser desequilibrado por amenazas, cabezazos, y agresión física hasta que las vacas agregadas encuentren su lugar en la estructura social del grupo (Grant y Albright, 2001). La agrupación de animales no familiarizados puede resultar en interacciones agresivas y diestrés, especialmente en animales de bajo rango social. Debido a ello, es recomendable mantener las vaquillonas aparte de las vacas para evitar problemas de adaptación al nuevo ambiente social y físico (Bøe y Færevik 2003). En ese sentido, la clasificación del ganado en grupos de acuerdo a la edad, peso vivo, o estados de producción es comúnmente practicada en los sistemas productivos (Raussi et al., 2005). Bøe y Færevik (2003) concluyeron que los efectos negativos de agrupamientos en la producción y en el comportamiento parecen restringirse a un corto periodo de 1-2 semanas, y que varios factores de manejo parecen modificarlos y reducirlos. Dichos factores serían: ambientación social a temprana edad, experiencia social previa, tamaño, composición y número de animales introducidos en un grupo, espacio disponible, entre otros.
En relación a la experiencia social previa, en terneros de cría se recomienda mantenerlos en grupos en lugar de alojarlos en corrales individuales, ya que se reducirían los problemas al momento de ser agrupados más adelante en su vida (Børre y Færevik 2003). Parece existir un nivel óptimo de experiencia social que facilita el establecimiento de relaciones de dominancia, y cuando es excedido puede determinar efectos en el comportamiento social del rodeo, pudiendo incluso perjudicar el establecimiento de estas relaciones (Raussi et al., 2005). Raussi et al. (2005) observaron el comportamiento de vaquillonas agrupadas en repetidas ocasiones y concluyeron que los primeros reagrupamientos facilitaron el establecimiento de las relaciones de dominancia entre pares, con menores interacciones agonistas y un desarrollo de las relaciones de dominancia más rápido en el séptimo reagrupamiento. Sin embargo, luego de esta séptima instancia, la frecuencia de interacciones agonistas comenzó a incrementarse, y el último reagrupamiento (16°) fue el que más tiempo llevó para establecer la relación de dominancia. Por lo tanto, en el momento de agrupar o reagrupar animales se debe tener en cuenta no exceder el límite de individuos que permite cada sistema productivo en particular, ni someter a los animales a reagrupamientos excesivos, en pro de minimizar el estrés y maximizar la productividad.

4.4.2. Bienestar y salud animal

El estatus social influye sobre cómo se desenvuelve cada animal en el ambiente social (González et al, 2008). El estrés social es la interrupción de la homeostasis como resultado de las interacciones sociales entre individuos de un grupo, que lo posicionan dentro de una jerarquía de dominancia. En vaquillonas de carne manejadas bajo distintos grados de competencia por el alimento, se determinó que el incremento de la competencia en los comederos produce estrés social, pero sólo en algunos individuos del grupo (González et al., 2008). Las más afectadas fueron las hembras dominantes, que serían la clase social más beneficiada ante una baja presión social pero la más estresada ante una gran presión social, ya que ante altas competencias los animales dominantes tratan de ascender en la jerarquía social o están estresados porque son descendidos en la misma. El hecho que vaquillonas subordinadas no hayan mostrado aumento en los indicadores de estrés sugiere que se han “rendido” ante cualquier posibilidad de ascender de rango social. Sin embargo, otro estudio ha mostrado resultados contradictorios en relación a los efectos de la jerarquía y dominancia sobre el estrés, reportando mayores niveles en animales subordinados en relación a los dominantes (Mench et al., 1990).

Las vacas lecheras en sistemas a corral dedican alrededor de 50-60% de su tiempo a estar echadas y están altamente motivadas a mantener unas 12 a 13 horas diarias descansando (Fregonesi et al., 2007). Si ese comportamiento se ve alterado, los animales responden reduciendo otras actividades en un intento de mantener un nivel relativamente estable de descanso (Cook et al., 2004). Cuando el grado de competencia es mayor que la capacidad de adaptación de los animales a esta situación, la reducción del tiempo de descanso es la explicación más aceptada de la disminución en el desempeño (Krawczel y Grant, 2009). González et al. (2008) observaron una respuesta cuadrática,
donde a medida que se incrementó la competencia disminuyó el tiempo de descanso, mientras que el tiempo dedicado a estar parados se incrementó linealmente con la competencia. Por lo tanto, los animales subordinados estuvieron más tiempo parados sin comer, esperando que disminuya la competencia en los comederos, en detrimento de su bienestar, concordando con los hallazgos de Fregonesi et al. (2007), y Huzzey et al. (2006). Dichos efectos son más pronunciados durante el periodo pico de alimentación (Huzzey et al., 2006).

La salud ruminal guarda relación con el comportamiento ingestivo: la variación de la composición de la RTM consumida entre individuos se ve incrementada ante altas densidades de carga animal (DeVries et al., 2004; Greter et al., 2008; DeVries y von Keyserlingk, 2009b), lo que repercute en forma directa sobre la incidencia de acidosis ruminal subaguda (SARA). Esto se explica por una disminución del pH ruminal luego de las comidas, y la tasa en que esto ocurre está directamente afectada por altos consumos de MS y selección de partículas; y por consecuente su relación con la concentración de carbohidratos fácilmente fermentables y fibra neutro detergente de la dieta (Allen, 1997; citado por Hosseinkhani et al., 2008. Ver más adelante). Parece ser que, tanto los más subordinados como los más dominantes poseen mayor riesgo de SARA: los primeros deben esperar que se desocupen los comederos, causando ansiedad y provocando mayores bocados en menos tiempo. Por otro lado, los dominantes se alimentan en exceso y seleccionan a favor de partículas de alimento altamente fermentables (concentrado), lo que también genera alta incidencia de SARA (Cook et al., 2004; González et al., 2008) y laminitis (Acuña, 2004). Si bien los factores nutricionales tienen gran influencia en el desarrollo de la laminitis, la susceptibilidad de un animal a desarrollarla depende además de cómo el ambiente físico y social influye sobre la duración y localización de los periodos dedicados a estar echados y parados (Galindo et al., 2000). Ante incrementos en la competencia, las vacas subordinadas prefieren echarse en los corredores en lugar de alimentarse luego de volver del ordeñe, y dedican más tiempo a estar paradas en los pasillos esperando para echarse que comiendo en comparación con animales intermedios y dominantes (Olofsson, 1999; Galindo et al., 2000). Esta conducta es un factor de riesgo significativo para el desarrollo de laminitis: el tiempo excesivo de posturas que demandan el apoyo del cuerpo sobre las pezuñas provoca un debilitamiento de la unión entre la falange y la pared de la misma (Cook et al., 2004).

En suma, es de esperar que tanto la dominancia social como el rango jerárquico de los animales afecten tanto la respuesta a situaciones de estrés social como la salud animal frente a condiciones de alta competencia.
4.4.3. Comportamiento ingestivo y consumo de alimento

La alimentación de vacas en forma grupal, y principalmente en condiciones de alimentación a corral, resulta inevitablemente en algún grado de competencia por la comida, incluso cuando los animales tienen libre acceso a la misma y espacio suficiente en el comedero. El ganado interactúa de manera que brinda a determinados individuos algunas ventajas sobre otros animales del rodeo (Olofsson, 1999). Las condiciones de manejo y alojamiento cuando los sistemas no están bien diseñados, pueden actuar como elementos distorsionantes de la organización social (Landaeta-Hernández, 2011), y determinadas características de los animales se vuelven más o menos importantes para poder competir. Por dicho motivo, a medida que se intensifican los sistemas productivos, adquiere mayor relevancia el buen diseño de las instalaciones, en particular a nivel de comedero. Las interacciones agonistas pueden maximizarse en los comederos, provocando que los animales dominantes posean más espacio y destinen mayor tiempo a alimentarse que los subordinados, quienes son desplazados más frecuentemente (Olofsson, 1999; DeVries et al., 2004; Huzzey et al., 2006).

El CMS se ve afectado por el comportamiento ingestivo, que es modulado a su vez por el ambiente (comederos y alojamientos), el manejo (estrategia de agrupamiento), y por las interacciones sociales (Grant y Albright, 2001; DeVries et al., 2004; DeVries et al., 2005; Krawczeł y Grant, 2009, Zobel et al., 2011). Se ha reportado que vacas que son forzadas a retrasar su horario de alimentación por el incremento de la competencia debido al hacinamiento, serán incapaces de mantener un consumo de alimento adecuado (Botheras, 2007). En esencia, vacas bajo sistemas lecheros pastoriles dedican 3 a 5 horas al día alimentándose, consumiendo un total entre 9 a 14 comidas, 7 a 10 horas rumiando, 30 minutos bebiendo, 2 a 3 horas siendo ordeñadas, y 10 horas al día echadas y/o descansando. Sin embargo, las decisiones de manejo del rodeo interfieren con la habilidad de los animales para desarrollar estas actividades que comprenden sus rutinas diarias (Grant y Albright, 2001). A su vez, existe una tendencia en las vacas a sincronizar su comportamiento; la mayoría de los animales del grupo rumiarán, se echarán y especialmente se alimentarán al mismo tiempo inmediatamente de repartida la comida, lo que impacta sobre el número de vacas que intentan acceder a un recurso limitado al mismo tiempo (DeVries et al., 2004; Botheras, 2007). Por ello, la superpoblación en los sistemas a corral tiende a resultar en una superpoblación de los comederos, lo que es altamente dependiente de su diseño y del grado de hacinamiento (Krawczeł y Grant, 2009). Cuando se incrementa la densidad animal en el comedero, se observa un aumento de interacciones agresivas en esta área (Olofsson, 1999; DeVries et al., 2004; Krawczeł y Grant, 2009; Val-Laillet et al., 2009), y las diferencias en los patrones de comportamiento se hacen más pronunciadas al momento del pico de alimentación (primeros 90 minutos de la entrega de comida fresca; DeVries et al., 2003).

La tasa de consumo, o sea los gramos de alimento consumidos por unidad de tiempo, es otro de los componentes importantes del comportamiento ingestivo, y la misma se verá alterada en animales sometidos a una situación competitiva en el comedero (Huzzey et al., 2006; Botheras, 2007; González et al., 2008; Hosseinkhani et al., 2008). En vacas secas alimentadas con RTM y sometidas
a altas densidades a nivel del comedero, no se encontraron diferencias en el CMS diario total en comparación con el grupo control no competitivo (Hosseinkhani et al., 2008). Para mantener CMS similares, las vacas alimentadas en forma competitiva comieron a una mayor tasa que las otras, observándose menor número de comidas por día que tendieron a ser más largas y de mayor volumen. Por su parte, DeVries y von Keyserlingk, (2009a) observaron que animales bajo competencia dedicaron menos tiempos a la alimentación, particularmente en el período inmediato a la entrega de comida fresca, y consumieron 9% menos de comidas por día, de mayor duración y volumen que las vaquillonas que no se encontraban bajo régimen de competencia. De forma similar a estos autores, Zobel et al. (2011) observaron que existe una relación positiva y débil pero consistente entre el número de interacciones agonistas exitosas, el CMS y la duración y frecuencia de visitas al comedero, y una relación fuertemente negativa entre la tasa de consumo y el número de interacciones agonistas exitosas. En un entorno competitivo, los animales acceden al alimento involucrándose en comportamientos agonistas, pero la intensidad en que la competencia se relaciona con la conducta alimentaria varía entre animales dentro del mismo grupo. Existen evidencias de que los animales son capaces de usar múltiples estrategias para asegurarse un adecuado acceso a los recursos. Los menos capaces de competir por el alimento logran adaptarse a los entornos de alta competitividad, encontrando tres patrones típicos de respuesta: algunos animales poseen bajo número de interacciones agonistas y tasas de consumo variables, compitiendo sólo si están motivados a hacerlo (enseguida de la administración de comida fresca), prefiriendo aumentar su tasa de ingesta en los momentos que podían acceder al alimento. Otros animales son innatamente competitivos y logran inalterado su comportamiento alimenticio (baja tasa de consumo de forma consistente), pero se envuelven frecuentemente en interacciones agonísticas. El tercer grupo de animales lo integran los menos competitivos, los cuales alteran su patrón de consumo salteando las horas pico de alimentación aunque estén motivados, siendo los más afectados (Zobel et al., 2011).

A su vez, el espacio de comedero es otro factor que determina el grado de competencia entre animales. La disponibilidad inadecuada de espacio impide a los animales que coman de forma simultánea, particularmente en horas pico de alimentación (DeVries et al., 2003). Esto puede provocar una mayor variabilidad en las ganancias diaria de peso (GDP) entre vaquillonas de diferentes estatus sociales (Greter et al., 2011). El espacio de comedero y la posición de cada individuo en la jerarquía social pueden influir sobre qué animales son capaces de acceder al comedero en el momento que lo desean (Botheras, 2007), impactando en el comportamiento ingestivo de los menos dominantes. Longenbach et al. (1999) investigó los requerimientos de espacio lineal de comedero de terneras y vaquillonas, separando cada categoría en tres tratamientos: 15, 31 y 47 cm de comedero por animal. Los comederos de largo limitado no afectaron adversamente las GDP grupales, pero determinaron diferencias en la GDP individual. Este resultado se puede explicar por el aumento de la tensión social dentro del grupo y la disminución de las oportunidades de obtener los nutrientes adecuados. El nivel de competencia disminuyó a la vez que aumentaba la longitud de comedero. El aumento del
número de bocados y de comidas, y la menor duración de la comidas para las vaquillonas alimentadas en comederos de 15 y 31 cm, en comparación con las vaquillonas alimentadas en comederos más largos, determinó un orden social más inestable y competitivo, ya que el espacio de alimentación fue limitado. La variación en la GDP aumentó a medida que disminuyó el largo de los comederos, y las relaciones de dominancia y subordinación se volvieron más definidas y fuertes dentro del grupo. Por lo tanto, la provisión de espacio de comedero más allá de la longitud que permite que los animales se alimenten simultáneamente, no tendría efecto en el comportamiento competitivo o ingestivo en animales alimentados con volúmenes restringidos.

En sistemas con alta competencia entre animales, como los sistemas a corral, los animales incapaces de adaptarse al ambiente competitivo estarán en desventaja en términos de cantidad y calidad de la comida a la que tienen acceso (DeVries et al., 2004; Zobel et al., 2011). La forma en que se administra el alimento, ad-libitum (González et al., 2008) o restringida (Greter et al., 2013), determina la magnitud y el sentido en que se ve afectado el CMS y por lo tanto la GDP. En el primer caso, es de esperar que cuando las vaquillonas dominantes se sacien las subordinadas tengan suficiente comida aún para alcanzar sus requerimientos diarios, por lo que la variabilidad de GDP dentro de los corrales sería moderada. En contrapartida, el suministro del alimento en forma restringida parecería perjudicar mucho más el consumo de las menos dominantes, exacerbar la diferencia provocada por la falta de bienestar, causando grupos con marcada heterogeneidad en peso vivo. Greter et al. (2011) observaron que durante el período pico de alimentación, en vaquillonas de leche bajo sistemas de alimentación restringida, sometidas a distintos tamaños de comedero, los animales dominantes dedicaban más tiempo a alimentarse en comparación con los de menor índice de suceso, independientemente del tratamiento. Esto sugiere que la dominancia en el comedero, si el volumen de alimento es limitado, podría restringir el CMS de animales subordinados, llevando a una incrementada variabilidad de la GDP entre vaquillonas de diferentes estatus sociales. DeVries et al. (2004) observaron que las vacas que tuvieron menor actividad ingestiva en comederos de menores longitudes, mostraron mayores incrementos de la actividad al expandir el espacio de éste, permitiendo que las vacas de menor rango social aumenten esta actividad en las horas pico. En resumen, la provisión de un mayor espacio de comedero mejora el acceso a la comida fresca y permite mayor actividad ingestiva sin aumentar el CMS total, pero a medida que esta aumentó el tiempo dedicado a consumir heno y sólo duplicó el de concentrado, particularmente para vacas subordinadas, sugiriendo una reducción de la variación de la calidad de la dieta consumida entre vacas, y posiblemente también del riesgo de problemas metabólicos.

Además de la modificación del patrón de consumo y del CMS total, el incremento de la competencia podría determinar diferencias en la composición del alimento consumido. González et al. (2008) observaron efectos del aumento de la competencia sobre el CMS total, pero a medida que esta aumentó el tiempo dedicado a consumir heno y sólo duplicó el de concentrado, dado por un aumento de la tasa de consumo de granos, mostrando una reducción de la relación de la calidad de la dieta consumida entre vacas, y posiblemente también del riesgo de problemas metabólicos.
consumida, determinó que las vaquillonas seleccionaran en contra de partículas largas y a favor de las cortas (Greter et al., 2008). Por su parte, DeVries y von Keyserlingk (2009a) no encontraron diferencias en el CMS ni en el comportamiento selectivo entre vaquillonas prepúberes alimentadas en forma competitiva (dos animales por comedero) y no competitiva (un animal por comedero). La falta de efecto de la competencia sobre el CMS no fue inesperada, dado experiencias anteriores de otros autores como González et al. (2008), Hosseinkhani et al. (2008), o muy poca variación observada por Olofsson (1999). Estos autores llegaron a la conclusión que la competencia por la comida altera los patrones alimenticios de vaquillonas de leche en crecimiento, reduce el acceso a la comida, particularmente durante períodos pico, y tiende a incrementar la variación diaria del comportamiento ingestivo. La selección a favor de partículas cortas tendió a ser mayor en las primeras 4hs luego de suministrado el alimento fresco, lo que determinaría que vacas sin acceso a la comida en las horas pico tienen un riesgo incrementado de consumir una dieta de reducido valor nutritivo (Hosseinkhani et al., 2008). Por lo tanto, el aumento en la competencia en el comedero promueve patrones de comportamiento ingestivo que podrían incrementar la variación entre animales en la composición de la RTM consumida.

En síntesis, la alimentación de animales en sistemas intensivos a corral deriva ineludiblemente en algún grado de competencia por la comida, tornándose muy relevante el buen diseño de las instalaciones y el manejo que se tenga para con estos animales. Debido a la tendencia en las vacas a sincronizar su comportamiento, principalmente inmediatamente de suministrado el alimento fresco, este sería el momento en donde los animales se verían más afectados por la tensión social. El comportamiento ingestivo está influenciado en un principio por la capacidad innata de cada individuo de afrontar una situación de competencia y en consecuencia el rango social que ocupe dentro de una jerarquía de dominancia. A su vez, el manejo de la alimentación (ad-libitum o en forma restringida), su presentación (RTM o separado el concentrado del voluminoso), el espacio y acceso al comedero, influyen en dicho comportamiento y por lo tanto en los efectos de la dominancia social sobre el mismo. Los animales incapaces de adaptarse a ambientes de alta competencia (subordinados) son forzados a cambiar su patrón de ingesta, aumentando la tasa de consumo para intentar cubrir sus requerimientos alimenticios en un tiempo limitado, estando en desventaja en términos de cantidad y calidad de la dieta a la que tienen acceso, lo que podría llevar a una mayor variabilidad en las GDP entre animales de diferentes estatus social.

4.4.4 Metabolismo energético

Se le denomina metabolismo a las transformaciones químicas de los nutrientes que resultan de los procesos de digestión y absorción a nivel de los tejidos. Este proceso incluye reacciones de tipo degradativo (catabolismo), y reacciones de tipo biosintético (anabolismo) (Gil y Sánchez de Medina). La glucosa es un carbohidrato simple, principal fuente energética para los tejidos y sustrato esencial para la síntesis mamaria de lactosa en rumiantes (Zarrin et
al., 2015). Su concentración circulante en ganado es altamente dependiente de la continua gluconeogénesis hepática a partir de ingredientes no glucídicos de la dieta (propionato, lactato, aminoácidos y glicerol) resultante de su digestión (Young, 1977; citado por Vieira et al., 2010). Debido a que la mayor parte de los carbohidratos consumidos por los rumiantes son convertidos en ácidos grasos volátiles en el rumen, la cantidad de glucosa que llega intacta al intestino y logra ser absorbida es muy limitada (Relling y Mattioli, 2010). La concentración plasmática de glucosa resulta del balance entre la tasa de producción y la tasa de utilización (Hiroyuki et al., 2001). La producción de glucosa hepática ocurre principalmente a partir del propionato originado en la fermentación ruminal, pero vacas en un estado nutricional inadecuado pueden usar otros sustratos gluconeogénicos, como aminoácidos endógenos y glicerol, para compensar las deficiencias nutricionales y prevenir disminuciones significativas de la glucosa circulante (Huntington, 1997).

Los niveles plasmáticos de glucosa en vacas Holando adultas no lactantes rondan los 65 mg/dL (Fumiai et al., 2006). No obstante, los valores de glucosa circulante en vaquillonas en crecimiento son mayores, variando entre 73 y 99 mg/dL según diversos autores (Sternbauer y Luthman, 2002; Brickell et al., 2009; Gamarra et al., 2014; Anderson et al., 2015), dependiendo principalmente de la proporción de concentrado en la dieta formulada para una determinada GDP. Sternbauer y Luthman (2002) observaron diferencias en la glucemia de animales con diferentes tasas de GDP (820 vs 460 gr/día), a favor de las que presentaron mayores GDP (99,0 vs 86,5 y mg/dL, respectivamente), atribuyendo dicha diferencia a la mayor oferta de concentrado en dichos animales. De manera similar, en un relevamiento de datos realizado en el Reino Unido durante la recría, Brickell et al. (2009) observaron que la glucosa decreció entre los 6 y 15 meses de vida de los animales en seguimiento, y las concentraciones de glucosa se incrementaron en los animales con GDP mayores a 800 gr/día en relación a aquellos con menores GDP (76,57 y 73,87 mg/dL respectivamente). Por lo tanto, las concentraciones plasmáticas de glucosa estarían relacionadas con las tasas de ganancia de peso, así como con los niveles de concentrado suministrados en la dieta.

La insulina es un mediador del estatus nutricional, y sus concentraciones periféricas están positivamente correlacionadas con el mismo (León et al., 2004). Desde el punto de vista bioquímico, es una hormona polipeptídica anabólica hipoglicemiante, secretada por las células pancreáticas en respuesta a las concentraciones de propionato, butirato, glucosa y aminoácidos (Mashek et al., 2001; Relling y Mattioli, 2010; Zarrin et al., 2015), y también por estimulación hepática a través del sistema nervioso autónomo (Bloom y Edwards, 1985, citado por Relling y Mattioli, 2010). El efecto metabólico de la insulina está regulado por dos factores: la capacidad secretora de células pancreáticas, y la unión de la insulina a su receptor, con la consiguiente activación de la cascada intracelular de los tejidos insulino-sensibles (De Koster et al., 2015). La insulina presenta funciones sobre el metabolismo de los carbohidratos al facilitar la entrada de glucosa a los tejidos (principalmente el musculo esquelético, aunque también hígado y tejido adiposo), y al estimular la síntesis de glucógeno e impedir la gluconeogénesis hepática a través de la inhibición de la secreción de glucagón (Zarrin et al., 2015). A su vez, posee
efecto antilipolítico y lipogénico (De Koster et al., 2015) y a nivel reproductivo actúa como señal metabólica regulando la respuesta ovárica a las gonadotrofinas que provocan la ovulación del fóliculo dominante existente (Diskin et al., 2003). Al igual que la insulina, las concentraciones de glucosa también tienen efecto sobre la reproducción al actuar como señal metabólica que provee información para el control de la secreción de GnRH, al influir tanto sobre la liberación de LH tónica como pulsátil. En consecuencia, un balance energético negativo sostenido en el tiempo determinaría disminuciones de los niveles de glucosa e insulina plasmática, pudiendo llevar al anestro cuando se ha perdido entre un 22-24% de su peso vivo inicial (Diskin et al., 2003).

A su vez, los niveles de insulina son altamente dependientes del nivel nutricional (Vieira et al., 2010): una restricción nutricional que determine un balance energético negativo, disminuye las concentraciones de insulina (Diskin et al., 2003; León et al., 2004; Pareek et al., 2007; Chelikani et al., 2009; Vieira et al., 2010; Walsh et al., 2012). En vaquillonas de carne en crecimiento sometidas a una restricción alimenticia, se encontró una disminución de las concentraciones sanguíneas de insulina, debido seguramente a la baja disponibilidad de glucosa y/o propionato en estos animales (León et al., 2004). En respuesta a esos bajos niveles de insulina, se estimula el catabolismo lipídico, lo que puede determinar incrementos en el riesgo de aparición de enfermedades metabólicas (Bossaert et al., 2008). A su vez, los bajos niveles de insulina están asociados a la alta producción de leche, ya que al disminuir el consumo de glucosa por los tejidos insulinodependientes se incrementa la disponibilidad de dicha glucosa en la glándula mamaria (Bossaert et al., 2008). En vacas lecheras, la respuesta glucosídica a la insulina estuvo negativamente asociada con el nivel de acumulación de tejido adiposo (De Koster et al., 2015). Por lo tanto, la disponibilidad de glucosa es importante para la producción láctea, y tanto las concentraciones plasmáticas de insulina como la respuesta glucosídica insulinodependiente están relacionadas a la producción de leche (Pareek et al., 2007).

En resumen, en situaciones de alta competencia es de esperar que la dominancia social altere el consumo de alimento y/o la tasa de consumo del mismo. De acuerdo a la bibliografía consultada, no existe información acerca de los efectos de la dominancia social sobre las concentraciones de insulina y glucosa en vaquillonas en crecimiento sometidas a condiciones de alta competencia por el alimento. La glucosa es la principal fuente energética para los tejidos y su concentración plasmática está relacionada con las proporciones de los distintos componentes de la dieta suministrada (principalmente propionato) y con la acción de la insulina. Por su parte, la secreción de insulina también es dependiente del momento fisiológico y su concentración periférica está positivamente correlacionada al estatus y/o balance nutricional. En éste sentido, es de esperar que los cambios en el consumo de alimento entre animales dominantes y subordinados determinen alteraciones de las concentraciones de glucosa e insulina entre ambos grupos de animales.
5. HIPÓTESIS

La dominancia social en vaquillonas de leche prepuberales mantenidas en condiciones de competencia continua determina cambios en los patrones de ingesta dados por una mayor tasa de consumo en los animales subordinados que en los dominantes, y un mayor CMS en animales dominantes que en los subordinados lo que se refleja en diferencias en el metabolismo energético entre ambos grupos de hembras.
6. OBJETIVOS

6.1. OBJETIVO GENERAL

Determinar los efectos de la dominancia social sobre el consumo de alimento y el metabolismo energético en vaquillonas de leche mantenidas en situaciones de competencia continua durante el periodo prepuberal.

6.2. OBJETIVOS PARTICULARES

Determinar los efectos de la dominancia social sobre:
- el consumo individual de alimento,
- la tasa de consumo de alimento y
- las concentraciones sanguíneas de insulina y glucosa,

en vaquillonas de leche prepuberales alimentadas en condiciones de alta competencia en un sistema intensivo a corral.
7. MATERIALES Y MÉTODOS

7.1. Animales y manejo

El experimento fue realizado en el Campo Experimental N°2 de Libertad, de la Facultad de Veterinaria, ubicado en el km 42,2 de la Ruta 1, Libertad, San José. Se utilizaron 16 terneras Holando de 8,2 ± 0,3 meses de edad y 208,5 ± 13,9 kg peso vivo promedio, procedentes de un mismo rodeo lechero con el mismo manejo previo. El lote de terneras fue dividido en 8 diadas homogéneas en edad y peso vivo, las cuales se mantuvieron en ocho corrales con sombra (5 × 8 m) y separadas entre sí 1 m por alambrados eléctricos. La dieta se formuló para obtener una ganancia diaria de 800 g/d (NRC, 2001; Tabla 1), y se administró en forma de RTM, preparada y administrada una vez por día a cada par de terneras, entre las 7:30 y las 8:00 am. Se les suministró agua ad-libitum en bebederos.

El período experimental fue de 120 días. En forma previa, se realizó un periodo de adaptación a la dieta y condiciones ambientales de 20 días, durante el cual también se determinó el consumo potencial de cada par de animales. Para ello, se registró diariamente la oferta y rechazo de RTM. A partir de dicho consumo potencial, se estableció un 5% de restricción para cada par de animales con el objetivo de maximizar la competencia entre ellas. A su vez, se instaló un solo comedero que debió ser compartido por la diada, con un espacio lineal total de 60cm, de forma de facilitar la competencia entre animales.

Tabla 1. Ingredientes y composición química de la dieta para vaquillonas mantenidas en encierre a corral durante 120 días. Valores expresados como porcentaje de MS de la dieta.

<table>
<thead>
<tr>
<th>INGREDIENTE</th>
<th>día 17</th>
<th>día 78</th>
<th>día 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silo de Maíz, %</td>
<td>58,8</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Silo de Pradera, %</td>
<td>---</td>
<td>59,7</td>
<td>59,7</td>
</tr>
<tr>
<td>Grano de maíz molido, %</td>
<td>28</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Harina de Soja, %</td>
<td>12,6</td>
<td>7,6</td>
<td>7,6</td>
</tr>
<tr>
<td>Premezcla Comercial, %</td>
<td>0,56</td>
<td>0,54</td>
<td>0,54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QUÍMICA</th>
<th>día 17</th>
<th>día 78</th>
<th>día 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS%</td>
<td>30,3</td>
<td>53,9</td>
<td>60,2</td>
</tr>
<tr>
<td>PC, %</td>
<td>11,1 ± 0,6</td>
<td>15,8 ± 4,9</td>
<td>14,8 ± 1,7</td>
</tr>
<tr>
<td>FDN, %</td>
<td>27,4 ± 2,8</td>
<td>19,4 ± 1,8</td>
<td>19,4 ± 0,5</td>
</tr>
<tr>
<td>FDN, %</td>
<td>50,7 ± 4,6</td>
<td>32,7 ± 8,0</td>
<td>31,9 ± 1,0</td>
</tr>
<tr>
<td>EE, %</td>
<td>2,6 ± 0,3</td>
<td>2,0 ± 0,6</td>
<td>2,4 ± 0,3</td>
</tr>
</tbody>
</table>

7.2 Determinación de la dominancia social

Se realizó la observación objetiva y registro del número de interacciones agonistas (peleas, desplazamientos o persecuciones) en cada diada durante los primeros 15 minutos luego de la entrega del alimento fresco. La determinación se realizó luego del periodo de adaptación (Día 0) y cada 15 días en la primera mitad de la etapa experimental y posteriormente una vez al mes. A partir de los datos obtenidos, el animal que realizaba la mayor cantidad de interacciones agonistas fue definido como el "dominante" mientras que el otro resultó el "subordinado".

7.3 Determinación del consumo de alimento

El CMS fue estimado a partir de la técnica del doble marcaje (Czarnocki et al., 1961, Robertson y Van Soest, 1981), utilizando un marcador externo (óxido de cromo) y un marcador interno (Fibra Neutro Detergente indigestible, FNDi) para la determinación de la producción de heces y de la digestibilidad de la MS, respectivamente.

Para la estimación de la producción de materia fecal, a lo largo de 3 períodos (17, 78 y 112 días del experimento) se administró óxido de cromo (Cr₂O₃ al 68,4%) vía oral a cada una de las vaquillonas una vez por día, a una dosis de 6 g cada vez, durante 10 días (Maeda et al, 2011). Durante los últimos 5 días de la administración del Cr₂O₃, se tomaron muestras de heces, dos veces por día, a diferentes horarios cada día. A su vez, durante los mismos 5 días se tomaron muestras de la RTM de un par de vaquillonas, y se realizó una muestra compuesta de esos 5 días por cada período. Las muestras se congelaron a -20°C y fueron conservadas hasta su posterior análisis. Al momento del análisis, las muestras de heces fueron secadas a 60°C durante cinco días y se molieron hasta un tamaño de 1 mm. Se realizó una muestra compuesta por animal y por período, tomando por 5 g de heces de cada horario. El contenido de Cr₂O₃ en heces de cada muestra compuesta se determinó mediante un espectrofotómetro de absorción atómica (Czarnocki et al., 1961) en el Laboratorio de Nutrición Animal de la Universidad Federal de Santa María (UFSM), Rio Grande del Sur, Brasil. Posteriormente, la producción de heces fue estimada a partir de la siguiente fórmula: Cantidad ingerida de marcador (mg/día)/Concentración del marcador en heces (mg/kg MS).

Para la determinación de la digestibilidad de la MS se utilizó la FNDi como marcador interno (Huhtanen et al, 1994; Lee y Hristov, 2013). Para ello, una muestra compuesta (5 g) de heces por animal y por período (secada y molida a 2 mm), fue incubada in situ por duplicado en bolsas Dacron (5 x 10 cm, poros de 50 micrones) en el rumen de dos vacas secas con fístula ruminal, alimentadas con una dieta estándar durante 12 días consecutivos. El mismo procedimiento se realizó con una muestra compuesta de la RTM por cada período, previamente secada (60°C durante 48 hs) y molida (2 mm), en este
caso la incubación se realizó por triplicado. Luego de la incubación, las bolsas se lavaron con abundante agua fría y secaron a 60°C. El residuo resultante de la incubación se reservó para el análisis de FND. El análisis de FND (Robertson y Van Soest, 1981) se realizó en el Laboratorio de Nutrición Animal de la Facultad de Veterinaria, UdelaR, utilizando un analizador de fibra (ANKOM 200/220). La digestibilidad se determinó como: 100 – [(FNDi g/kg RTM/FNDi g/kg heces)*100]

Finalmente, a partir de la determinación de la producción de heces y de la digestibilidad, el CMS fue estimado utilizando la siguiente ecuación:

\[
CMS (kg MS/d) = \frac{producción de heces (kg MS/d)}{100 – \% digestibilidad MS}.
\]

A su vez, a partir de las muestras de la RTM se determinó la composición química de la dieta: materia seca (MS), cenizas, materia orgánica (MO), nitrógeno total, fibra neutro detergente (FND) y fibra ácido detergente (FAD) (Robertson y Van Soest, 1981), extracto etéreo (EE), nitrógeno insoluble en solución ácido detergente (ADIN) y nitrógeno insoluble en solución neutro detergente (NDIN), y carbohidratos no fibrosos de la ración (CNF).

7.4 Determinación de la tasa de consumo

Conjuntamente a la toma de muestra para la determinación del CMS (día 17, 78 y 112 del experimento), se realizó la observación del comportamiento ingestivo mediante el procedimiento de scan sampling. Durante 12 horas, a intervalos de 10 minutos se registraron las diferentes actividades realizadas por cada animal. En lo que respecta a nuestra tesis, se analizó solamente el tiempo en que se encontraban realizando la actividad “Comiendo”, y para la determinación de la tasa de consumo se tomó como supuesto que los animales realizaban esa misma actividad durante los 10 minutos previos en que fue registrado su comportamiento. Por lo tanto, se estimó el tiempo total de CMS en cada periodo multiplicando el registro de cada actividad ingestiva por 10. Una vez calculado el CMS diaria individual por período, se dividió el mismo entre el tiempo total individual en que fue consumido el alimento en cada observación, obteniendo la tasa de consumo expresada como kg MS/minuto.

7.5 Determinación de las concentraciones de glucosa e insulina en sangre

A intervalos de 2 semanas, se realizaron extracciones de sangre en todos los animales en ayuno mediante la punción de la vena caudal. La muestra de sangre se depositó en tubos con ácido etildiaminotetraacético (EDTA) y sin anticoagulante, para la obtención del plasma y suero sanguíneo, respectivamente. Las muestras fueron centrifugadas y el suero y plasma resultante se conservaron a -20°C hasta su posterior análisis. A nivel de laboratorio, se determinaron las concentraciones de insulina mediante un análisis inmunoradiométrico (IRMA) (DIASource ImmunoAssays S.A., Louvain-la-Neuve, Bélgica). Dicho análisis ya fue previamente utilizado en bovinos
(Astessiano et al, 2012). La sensibilidad del ensayo fue de 1µUI/mL, y los CV intraensayo para los controles bajos (22,8 µUI/mL) y altos (89,5 µUI/mL) fueron de 10 y 7,5%, respectivamente. Por su parte, las concentraciones de glucosa se determinaron mediante espectrofotometría (VITALAB, Selectra 2 autoanalizador; Vital Scientific, Dieren, Suecia) utilizando kits comerciales (Wiener Lab GROUP, Rosario, Argentina).

7.6 Análisis estadístico

El análisis estadístico de las concentraciones de glucosa e insulina a lo largo del experimento fueron realizados mediante ANOVA para medidas repetidas y datos pareados utilizando el PROC MIXED del SAS (SAS Institute Inc., Cary, NC, USA). Se consideraron como efectos fijos el rango social (dominante y subordinada), el período y la interacción rango × periodo, y la díada y el animal como efectos aleatorios. La fecha de nacimiento fue incluida como co-variable si P < 0,2. El consumo de MS y la tasa de consumo se analizaron mediante ANOVA y análisis de test de t para datos pareados, respectivamente. Se consideraron diferencias significativas cuando P ≤ 0,05, y tendencias los valores 0,05 < P ≤ 0,1. Todos los datos se presentan como media ± error estándar.
8. RESULTADOS

8.1 Consumo de Materia Seca y Tasa de Consumo

En la Tabla 2 se presenta el CMS y la tasa de consumo en vaquillonas dominantes y subordinadas en los tres periodos de determinación. El CMS no presentó diferencias (P > 0,05) entre animales dominantes y subordinados en ninguno de los periodos analizados.

Las vaquillonas subordinadas presentaron una mayor tasa de consumo en comparación con las dominantes en el período II (P = 0,01), y una tendencia en el período I (P=0,09).

Tabla 2. Consumo de materia seca (CMS) y Tasa de consumo en vaquillonas de leche dominantes (DOM) y subordinadas (SUB) durante los tres periodos de muestreo (Periodo I = 17 d; Periodo II = 78 d; Periodo III = 112 d). Las vaquillonas fueron mantenidas de a pares y alimentadas con una ración totalmente mezclada durante 120 días.

<table>
<thead>
<tr>
<th>CMS</th>
<th>DOM</th>
<th>SUB</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período I, kg MS/día</td>
<td>6,21 ± 0,31</td>
<td>6,21 ± 0,31</td>
<td>ns</td>
</tr>
<tr>
<td>Período I, % PV</td>
<td>2,85</td>
<td>2,85</td>
<td></td>
</tr>
<tr>
<td>Período II, kg MS/día</td>
<td>6,59 ± 0,29</td>
<td>7,01 ± 0,29</td>
<td>ns</td>
</tr>
<tr>
<td>Período II, % PV</td>
<td>2,40</td>
<td>2,61</td>
<td></td>
</tr>
<tr>
<td>Período III, kg MS/día</td>
<td>7,46 ± 0,27</td>
<td>7,57 ± 0,27</td>
<td>ns</td>
</tr>
<tr>
<td>Período III, % PV</td>
<td>2,52</td>
<td>2,59</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tasa De Consumo, kg MS/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período I</td>
</tr>
<tr>
<td>Período II</td>
</tr>
<tr>
<td>Período III</td>
</tr>
</tbody>
</table>

ns: no significativo (P>0,05)
8.2 Metabolismo energético

En las Figuras 1 y 2 se presentan las variables correspondientes al metabolismo energético. Las vaquillonas dominantes tuvieron mayores concentraciones de glucosa que las subordinadas (89,2 ± 1,3 vs 86,8 ± 1,3 mg/dl, respectivamente; P < 0,01). No se encontró interacción grupo por periodo (P > 0,05). Las concentraciones de insulina no presentaron diferencias entre animales de ambos rangos sociales (22,4 ± 1,5 vs 21,3 ± 1,5 µUI/ml, para dominantes y subordinadas, respectivamente; P > 0,05), y tampoco se encontró interacción grupo por periodo (P = 0,12).

Figura 1. Concentraciones de glucosa en vaquillonas de leche dominantes y subordinadas a lo largo del periodo experimental. Las vaquillonas fueron mantenidas de a pares y alimentadas con una ración totalmente mezclada durante 120 días.
Figura 2. Concentraciones de insulina en vaquillonas de leche dominantes y subordinadas a lo largo del periodo experimental. Las vaquillonas fueron mantenidas de a pares y alimentadas con una ración totalmente mezclada durante 120 días.
9. DISCUSIÓN

En el presente estudio la tasa de consumo fue mayor en las vaquillonas subordinadas en comparación a las dominantes, cuando ambas fueron mantenidas en condiciones de competencia continua durante el periodo prepuberal. Éste hallazgo coincide con lo reportado por Zobel et al. (2011), quienes determinaron que existe una relación fuertemente negativa entre la tasa de consumo y el número de interacciones agonistas exitosas. En el presente estudio se determinó que las vaquillonas subordinadas comieron durante menos tiempo en las primeras horas luego de la entrega del alimento (datos no presentados; tesis de grado Donadio, Eustathiou, Sánchez). Por lo tanto, es probable que las vaquillonas subordinadas comieran a una mayor tasa en comparación con las dominantes con el objetivo de mantener el CMS necesario para cubrir sus requerimientos. En forma similar, las vacas mantenidas en situaciones de alta competencia presentan menor número de comidas por día, consumiendo mayor volumen durante más tiempo que cuando se las mantiene sin competencia (Hosseinkhani et al., 2008). A su vez, las diferencias encontradas en las tasas de consumo entre ambos grupos posiblemente estén relacionadas a un incremento de la motivación por la comida, lo que podría resultar en discordancias entre el consumo de alimento real y el estimado (Greter et al., 2015). No obstante, DeVries et al. (2004) plantearon que la provisión de un mayor espacio de comedero mejora el acceso a la comida fresca y permite mayor actividad ingestiva sin aumentar la tasa de ingestión, particularmente en vacas subordinadas. A su vez, los cambios en el patrón de ingesta de alimento son más marcados en el período inmediato a la entrega de comida fresca (DeVries et al., 2004; Botheras, 2007; DeVries y von Keyserlingk 2009a; Zobel et al., 2011). Por lo tanto, los resultados obtenidos en el presente estudio permiten corroborar que los animales subordinados deben alterar su patrón de ingesta en un intento de satisfacer sus requerimientos a través de un mayor consumo de alimento por unidad de tiempo.

El CMS promedio de ambos grupos durante los tres períodos fue similar a los estimados por el NRC (2001), coincidiendo también con los consumos alcanzados por animales en otros estudios en condiciones similares (González et al., 2008; Chelikani et al., 2009; Greter et al., 2010). En los estudios realizados en sistemas de alimentación ad-libitum no hubo efecto de la competencia social sobre el CMS total entre animales de distinta posición jerárquica (Hosseinkhani et al., 2008; González et al., 2008; DeVries y von Keyserlingk, 2009a). Esto posiblemente sea debido a que en dichos sistemas, aún queda alimento suficiente para cubrir las necesidades de los animales subordinados cuando los animales dominantes se sacian y pierden su interés por la comida. En contraposición a dichos sistemas, Greter et al. (2011) sugirieron que la restricción del espacio de comedero o volumen de alimento podría perjudicar el CMS de los animales de menor rango. No obstante, en nuestro estudio en que los animales tenían condiciones de alimentación restringida no se observaron diferencias en el consumo total de alimento entre vaquillonas dominantes y subordinadas. Como fuera mencionado, la mayor tasa de consumo de las vaquillonas subordinadas pudo posibilitarles mantener
un CMS adecuado. A su vez, es posible que la restricción aplicada en la cantidad de alimento y en el espacio de comedero haya resultado muy leve como para generar diferencias significativas. En ese sentido, Greter et al. (2013) tampoco observaron diferencias significativas en el CMS entre animales manejados en situaciones de competencia con alimentación restringida. Sin embargo, las ganancias diarias de peso de los animales mantenidos con menores niveles de competencia fueron mayores (Greter et al., 2013). Esto sugiere que con mayor espacio lineal de comedero los animales podrían haber sido más capaces de ganar peso (más eficientes) ya que pudieron alimentarse de manera simultánea y sin interferencias, evadiendo la competencia o la presión social. En forma similar, en nuestro estudio las vaquillonas dominantes presentaron mayores ganancias diarias de peso y un mayor peso vivo que las subordinadas (datos no presentados; Lacava et al., 2015). Por lo tanto, la diferencia en el patrón de consumo entre vaquillonas de ambos grupos determinaría cambios en la utilización del alimento consumido. Es posible especular que con un mayor grado de restricción al realizado en nuestro estudio, el incremento en la tasa de consumo podría resultar insuficiente para mantener adecuados niveles de CMS en las vaquillonas subordinadas.

La glucosa es el carbohidrato de mayor importancia en las funciones metabólicas de crecimiento, mantenimiento y producción. Las concentraciones de la misma variaron entre vaquillonas de ambos rangos sociales: las vaquillonas dominantes tuvieron mayores concentraciones que las subordinadas. En condiciones donde los animales se encuentran en confinamiento y en una situación de alta competencia, aquellos animales incapaces de adaptarse al ambiente competitivo estarán en desventaja en términos no sólo de cantidad sino también de calidad de la comida a la que tienen acceso (Botheras, 2007; Zobel et al., 2011). Greter et al. (2008) y Hosseinkhani et al. (2008) concluyeron que las vacas seleccionan en contra de partículas largas (heno y silo) y a favor de las más pequeñas (grano). Por su parte, González et al. (2008) obtuvieron resultados similares, y observaron además una mayor tasa de consumo de concentrado, indicando que los animales están más motivados a consumir grano que fibra. La posición de cada individuo en la jerarquía social puede influir sobre qué animales son capaces de acceder al comedero en el momento que lo desean (Botheras, 2007). Ésta selección del alimento podría explicar las diferencias en los niveles de glucosa observada en nuestro estudio. La gluconeogénesis hepática, principal fuente de glucosa en el rumiante, ocurre primordialmente a partir del propionato originado en la fermentación ruminal, que proviene del concentrado de la dieta (Huntington, 1997; Relling y Mattioli, 2010; Vieira et al., 2010). Por lo tanto, las vaquillonas dominantes, que tuvieron mayor acceso al alimento en las primeras horas del suministro (datos no presentados; tesis de grado Donadio, Eustathiou, Sánchez), pudieron haber seleccionado el concentrado en mayor proporción que los animales subordinados. De esa manera, las vaquillonas dominantes habrían obtenido una mayor proporción de precursors neoglucogénicos, lo que explicaría la mayor concentración de glucosa
plasmática en las vaquillonas dominantes en comparación con las subordinadas.

La insulina es un mediador del estatus nutricional, y sus concentraciones periféricas están correlacionadas positivamente con el mismo (León et al., 2004), por lo que su metabolismo difiere entre ganado en balance energético positivo y negativo (Vieira et al., 2010). En nuestro estudio, realizado en vaquillonas prepúberes, ambos grupos se encontraban en balance nutricional positivo, y los niveles de insulina no presentaron diferencias significativas entre animales dominantes y subordinados. La condición corporal fue similar en ambos grupos (datos no presentados; Lacava et al., 2015), lo que concuerda con la ausencia de diferencias en los niveles de insulina (León et al., 2004; De Koster et al., 2015). En un estudio realizado por Sternbauer y Luthman (2002) en el que se evaluó el efecto de dietas con distintos niveles de concentrado sobre la sensibilidad a la insulina en vaquillonas jóvenes no se encontraron diferencias ni en la respuesta de los tejidos a la insulina entre el grupo con altos niveles de concentrado en comparación al grupo con baja suplementación, ni en los niveles basales de la misma entre ambos grupos. Sin embargo, existieron diferencias en las concentraciones de glucosa y en las ganancias diarias de peso entre grupos, lo que concuerda con nuestros resultados. Es probable que los animales dominantes que accedieron primero al alimento seleccionaran a favor del concentrado a un nivel tal que provocó cambios en los niveles de glucosa, pero no fue suficiente para alcanzar el umbral necesario para alterar los niveles de insulina y la sensibilidad de los tejidos a la misma.
10. CONCLUSIONES

En condiciones de alta competencia no hubo efecto del rango social de las vaquillonas sobre el consumo de materia seca, aunque las vaquillonas subordinadas tuvieron una mayor tasa de consumo que las dominantes. A su vez, las vaquillonas dominantes tuvieron mayores concentraciones de glucosa, evidenciándose un estatus energético diferente en relación a las subordinadas, sin encontrarse diferencias en las concentraciones de insulina entre grupos.
11. REFERENCIAS BIBLIOGRÁFICAS

